83 research outputs found

    Zinc-Doped Copper Oxide Nanocomposites Inhibit the Growth of Pancreatic Cancer by Inducing Autophagy Through AMPK/mTOR Pathway

    Get PDF
    Zinc doped copper oxide nanocomposites (Zn-CuO NPs) is a novel doped metal nanomaterial synthesized by our group using the sonochemical method. Our previous studies have shown that Zn-CuO NPs could inhibit cancer cell proliferation by inducing apoptosis via ROS-mediated pathway. In the present study, we studied the anticancer effect of Zn-CuO NPs on human pancreatic cancer cells. MTS assay revealed that Zn-CuO NPs was able to inhibit cancer cell growth. TEM, flow cytometry and fluorescence microscope analysis showed that Zn-CuO NPs induced autophagy significantly; the number of autophagosomes increased obviously in cells treated with Zn-CuO NPs. Western blot analysis revealed that treatment with the NPs resulted in activation of AMPK/mTOR pathway in both AsPC-1 and MIA Paca-2 cells in dose dependent manners. Moreover, in the presence of AMPK activator AMPKinone, the protein level of p-AMPK, p-ULK1, Beclin-1 and LC3-II/LC3-I increased, while the protein expression of p-AMPK, p-ULK1, Beclin-1 and LC3-II/LC3-I decreased in the presence of AMPK inhibitor Compound C. In vivo study using xenograft mice revealed that Zn-CuO NPs significantly inhibited tumor growth with low toxicity. Our study confirms that Zn-CuO NPs inhibit the tumor growth both in vitro and in vivo for pancreatic cancer. AMPK/mTOR pathway plays an important role in the NPs induced inhibition of tumor growth

    Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis

    Get PDF
    Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis.H.L. was supported by an Australian Research Council grant (DP150101875) awarded to M.A. R. and C.X.C. T.G.S. is supported by an Australian Government Research Training Program Scholarship. R.A.G.-P. is supported by an International Postgraduate Research Scholarship and a University of Queensland Centenary Scholarship. This project was supported by the computational resources of the Australian National Computational Infrastructure (NCI) National Facility systems through the NCI Merit Allocation Scheme (Project d85) awarded to M.A.R. and C.X.C. The data used in this project were funded by the Great Barrier Reef Foundation’s Resilient Coral Reefs Successfully Adapting to Climate Change research and development program in collaboration with the Australian Government, Bioplatforms Australia through the National Collaborative Research Infrastructure Strategy (NCRIS), Rio Tinto and a family foundation. The authors also acknowledge the work done by the Reef Future Genomics (ReFuGe) 2020 Consortium. Access to data generated by the consortium can be accessed via reefgenomics.org. In memory of S.F., our friend and colleague who is sorely missed

    Evaluation of isolation between two differential microstrip antennas

    No full text
    This report gives the design of two differential microstrip patch antennas on the same substrate. First, background information on the antenna and the microstrip patch antenna is presented. Second, the design equation of single-ended microstrip patch antenna is used to determine the length of differential microstrip rectangular patch. Third, the width and feed point of the differential microstrip rectangular patch are determined and designed using SONNET. The isolation results between the two differential microstrip patch antennas are related to the S-parameters of the differential pattern, which can be obtained from MATLAB. In addition, two differential circular patch antennas are designed and compared with two differential rectangular patch antennas. The results show that the insertion loss of the circular antennas is -14 dB, while that of the rectangular antennasis -12.2 dB, which means that the two differential circular antennas have better isolation.Bachelor of Engineering (Electrical and Electronic Engineering

    Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli

    No full text
    Abstract Background Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. Methods The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. Results The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella enterica, Shigella strains, or any other pathogenic strains tested. Conclusions A multiplex real-time PCR assay that can rapidly and simultaneously detect E. coli O157:H7 and screen for non-O157 STEC strains has been developed and assessed for efficacy. The inclusivity and exclusivity tests demonstrated high sensitivity and specificity of the multiplex real-time PCR assay. In addition, this multiplex assay was shown to be effective for the detection of E. coli O157:H7 from two common food matrices, beef and spinach, and may be applied for detection of E. coli O157:H7 and screening for non-O157 STEC strains from other food matrices as well

    Presence and Persistence of Salmonella in Water: The Impact on Microbial Quality of Water and Food Safety

    No full text
    Salmonella ranks high among the pathogens causing foodborne disease outbreaks. According to the Centers for Disease Control and Prevention, Salmonella contributed to about 53.4% of all foodborne disease outbreaks from 2006 to 2017, and approximately 32.7% of these foodborne Salmonella outbreaks were associated with consumption of produce. Trace-back investigations have suggested that irrigation water may be a source of Salmonella contamination of produce and a vehicle for transmission. Presence and persistence of Salmonella have been reported in surface waters such as rivers, lakes, and ponds, while ground water in general offers better microbial quality for irrigation. To date, culture methods are still the gold standard for detection, isolation and identification of Salmonella in foods and water. In addition to culture, other methods for the detection of Salmonella in water include most probable number, immunoassay, and PCR. The U.S. Food and Drug Administration (FDA) issued the Produce Safety Rule (PSR) in January 2013 based on the Food Safety Modernization Act (FSMA), which calls for more efforts toward enhancing and improving approaches for the prevention of foodborne outbreaks. In the PSR, agricultural water is defined as water used for in a way that is intended to, or likely to, contact covered produce, such as spray, wash, or irrigation. In summary, Salmonella is frequently present in surface water, an important source of water for irrigation. An increasing evidence indicates irrigation water as a source (or a vehicle) for transmission of Salmonella. This pathogen can survive in aquatic environments by a number of mechanisms, including entry into the viable but nonculturable (VBNC) state and/or residing within free-living protozoa. As such, assurance of microbial quality of irrigation water is critical to curtail the produce-related foodborne outbreaks and thus enhance the food safety. In this review, we will discuss the presence and persistence of Salmonella in water and the mechanisms Salmonella uses to persist in the aquatic environment, particularly irrigation water, to better understand the impact on the microbial quality of water and food safety due to the presence of Salmonella in the water environment

    Analyzing Trends of Dike-Ponds between 1978 and 2016 Using Multi-Source Remote Sensing Images in Shunde District of South China

    No full text
    Dike-ponds have experienced significant changes in the Pearl River Delta region over the past several decades, especially since China’s economic reform, which has seriously affected the construction of ecological environments. In order to monitor the evolution of dike-ponds, in this study we use multi-source remote sensing images from 1978 to 2016 to extract dike-ponds in several periods using the nearest neighbor classification method. A corresponding area weighted dike-pond invasion index (AWDII) is proposed to describe the spatial evolution of dike-ponds, both qualitatively and quantitatively. Furthermore, the evolution mechanisms of dike-ponds are determined, which can be attributed to both natural conditions and human factors. Our results show that the total area of dike-ponds in 2016 was significantly reduced and fragmentation had increased compared with the situation in 1978. The AWDII reveals that Shunde District has experienced three main phases, including steady development, rapid invasion and a reduction of invasion by other land use types. Most dike-ponds have now converted into built-up areas, followed by cultivated lands, mainly due to government policies, rural area depopulation, and river networks within Shunde. Our study indicates that the AWDII is applicable towards the evaluation of the dynamic changes of dike-ponds. The rational development, and careful protection, of dike-ponds should be implemented for better land and water resource management

    A machine learning framework for remaining useful lifetime prediction of li-ion batteries using diverse neural networks

    No full text
    Accurate prediction of the remaining useful life (RUL) of lithium-ion batteries (LIBs) is pivotal for enhancing their operational efficiency and safety in diverse applications. Beyond operational advantages, precise RUL predictions can also expedite advancements in cell design and fast-charging methodologies, thereby reducing cycle testing durations. Despite artificial neural networks (ANNs) showing promise in this domain, determining the best-fit architecture across varied datasets and optimization approaches remains challenging. This study introduces a machine learning framework for systematically evaluating multiple ANN architectures. Using only 30% of a training dataset derived from 124 LIBs subjected to various charging regimes, an extensive evaluation is conducted across 7 ANN architectures. Each architecture is optimized in terms of hyperparameters using this framework, a process that spans 145 days on an NVIDIA GeForce RTX 4090 GPU. By optimizing each model to its best configuration, a fair and standardized basis for comparing their RUL predictions is established. The research also examines the impact of different cycling windows on predictive accuracy. Using a stratified partitioning technique underscores the significance of consistent dataset representation across subsets. Significantly, using only the features derived from individual charge–discharge cycles, our top-performing model, based on data from just 40 cycles, achieves a mean absolute percentage error of 10.7%

    Tandem synthesis of tertiary amines using graphene encapsulated Ni nanocatalyst via nitro compounds hydrogenation and primary amine methylation

    No full text
    Development of the economic, environmentally friendly synthesis of amines from nitro compounds remains important and challenging. In this work, the graphene shell encapsulated none noble Ni-based catalysts were successfully designed and synthesized via an environmentally friendly method using H2O or EtOH as solvent. These fresh and recycling catalysts were characterized by X-ray diffraction and X-ray photoelectron spectroscopy. For the nitro compounds hydrogenation, Ni@C-600-H2O exhibits the best catalytic activity to achieve 100 mol/mol conversions of nitrobenzene and 99% selectivity of aniline under mild reaction conditions of 1.0 MPa H2 and 60 °C. Many halogen-substituted, olefin substituted nitro compounds and aliphatic nitro compounds were investigated and desired products were obtained in excellent selectivity. What is more, the catalyst had excellent stability and could be recycled 13 times without any significant loss in selectivity and activity. Furthermore, we also reported the methodology for tertiary amines synthesis using Ni-based catalyst via one-pot, cost-effective tandem combination reaction with nitrobenzene hydrogenation and amines N-methylation
    • …
    corecore